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Background: Can 1D modeling be physical?

1D x-x' phase space much simpler to model collective beam evolution

Possible Issue: Solution of Poisson's equation for electric self-field of a
charge in free space 1s radically different as function of dimension
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Can a beam model with 1D self-field produce physically relevant results?
+ If so, adds relevance to interesting 1D collective mode results by
Sacherer, Anderson, Okamoto, Startsev and Davidson, and others



1D Sheet Beam for intense beam modeling
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1D Vlasov-Poisson System

The sheet beam evolves in x-x' phase-space according to Vlasov's equation:
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+ Boundary Conditions




In 1D the Poisson equation simply solved for the field
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Continuous focusing and beam stability

For continuous focusing:

K = k%o = const

the Hamiltonian i1s a constant of the motion
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and

f(H) >0 <= Equilibrium

For continuous focusing without bends, system conservation constraints:
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show a sufficient condition for beam stability 1s that

df(H)/dH <0 <= Stable Equilibrium




Centroid and Envelope Equations

Low order moment equations for 1* (centroid) and 2™ (envelope) order
moments of distribution help interpret evolution

Statistical Average:
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Centroid Equation of Motion:
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RMS Equivalent Beam and KV Distribution

For a uniform density beam (density uniform within » = X + z; edge):
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Centroid and envelope equations of motion are decoupled and closed!



Self-consistent KV distribution generates the uniform density beam
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* F. Sacherer, Ph.D. Thesis, University of California (1968)

+ 1D sheet beam form very different than more familiar 2D KV distribution
- Less singular (1/sqrt divergence rather than delta function divergence)

+ Consistent with (linear force) image charges for 1D sheet beam!

An rms equivalent KV beam can then be defined for any distribution f:

Quantity RMS Calculated
Equivalent  From Distribution

Perveance P = ¢*N/(2eom~y; B3 c?)

Centroid Coordinate X = (x)

Centroid Angle X'’ = (a')

Envelope Coordinate  x = /3(Z?)

Envelope Angle Ty, = V3(z3') [/ (22)

Emittance £ = 3./(22)(z?) — (z3)?




For an rms equivalent KV beam with a matched envelope
in a periodic lattice

(s + Lp) = xp(s)

a particle moving within the equivalent beam has phase advance:
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Allows a convenient, normalized measure of space-charge strength:
o

— — 1 Warm Beam,
Tune Depression: g0 Min space-charge
o Particle moving in applied focus
— € (0,1) o
00 — —0 Cold beam,
g0

Max space-charge
Space-charge cancels applied focus

For continuous focusing, the tune depression can be simply expressed:
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Parametric Equivalence with 2D Beams

Equivalences relating more common 2D and 1D sheet beam parameters

can be developed:
Applied Focus:

k(s) = r;(s)

3 = x or y for 2D system

Perveance: (for same characteristic plasma frequency)
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co =4 [(22) 1 (2'2)) — (za’), ]V

For continuous focusing these results give:
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Using these equivalences:
* Single particle orbits same as in higher dimensional models
* Centroid has correct single particle phase advance
- Image scaling right sense in linear approx but moditied form
* Envelope mode analysis shows:
Only “breathing” symmetry envelop oscillation, but 1D mode
frequency corresponds to 2D “quadrupole” mode oscillation

~ e*% mode variation

k o\ ?
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Suggests 1D model may not be good for halo extent estimates

* Formulas relating emittance variation to excess field energy can be
Derived in similar form to higher dimensional models
(Wangler, Lapostolle)



Continuous Focusing: The Thermal Equilibrium Sheet Beam Distribution:
[2D: Davidson, Physics of Nonneutral Plasmas (1990); Reiser, Theory and Design of
Charged Particle Beams (1994); PRSTAB 12, 114801(2009), .... |

In a long continuous focusing channel with x = kgo = const, collisions
eventually relax the beam to thermal equilibrium. The Fokker-Planck equation
predicts the unique Maxwell-Boltzmann distribution describing this limit:

HI'GS
lim f o exp (— t)

S— 00 T

Hoout = single particle Hamiltonian of beam
rest — . .
in rest frame (energy units)

1" = const Thermodynamic temperature
(energy units)

Beam propagation time in transport channel is generally short relative to collision time,
inhibiting full relaxation
+ Collective effects may enhance relaxation rate

- Wave spectra likely large for real beams and enhanced by
transient and nonequilibrium effects
- Random errors acting on system may enhance and lock-in phase mixing



Continuous focusing thermal equilibrium distribution

Analysis of the rest frame transformation shows the 1D Maxwell-Boltzmann
distribution is:
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Analysis of system obtains a 1D nonlinear Poisson equation that 1s analogous to
2D equation
+ Solve numerically or (approximately) analytically analogously to
POP 15, 043101 (2008)

Interpret results 1n terms of rms equivalent beam tune depression:
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Constraints derived/solved to hold relevant parameters fixed and illustrate
equilibrium characteristics at fixed pervance P, focusing strength £gg asa
function of /00



Distribution contours at fixed charge and focusing strength
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+ For strong space-charge particles move approx force-free in core till approaching
the edge where it is rapidly (nonlinearly) reflected



Phase-space properties of the distributions 1in 2D and 1D are very similar in
spite of Coulomb force being radically different in 2D and 1D
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How are 2D and 1D results so similar?

* Debye screening of linear applied focus force partly explains



Debye Screening in a Thermal Equilibrium Sheet Beam

Space-charge and the applied focusing forces of the lattice work together to
Debye screen interactions in the core of a beam with high space-charge intensity

Review:

Free-space field of a “bare” test sheet-charge >2; at the origin x =0
0” P 2
p(r) = Tud(a) 0= 2 = =)
solution shows long-range interaction
9 _ sgn(x) >
ox — 56 260

Follow analysis in Davidson, Physics of Nonneutral Plasmas (1990), set:

¢g = Thermal Equilibrium potential with no test sheet-charge

¢ = ¢o + 09

0¢ = Perturbed potential from test sheet-charge

Place a small test sheet charge at x = 0 in a thermal equilibrium beam and assume:

+ Equilibrium adiabatically adapts to test charge
+ Equilibrium relatively cold so density profile 1s flat



This gives:

0> 0 D4
@&b— (WAp)? _55@)

1/2
N — egl’ / ~ Debye radius formed from peak,
b= q2n ~ on-axis beam density

Derive a general solution by connecting solution very near the test sheet-charge
with the general solution for x nonzero:

oS
Potential: dp(x) ~ %e 2]/ (v AD)
€0
i 999 St~ Jal/(wAp)
Field: oy = sgn(x) 2 e

Classic Debye screened interaction form
» Applied focus force takes role of 2™ (stationary) neutralizing species
+ Beam particles redistribute to screen bare interaction
+ Expect beam to behave as a plasma with similar collective waves etc.



Compare result to higher dimensional models of thermal equilibrium beams:

Dimension Distance Measure Test Charge Density Screened Potential
p = O =~
1D || Y0 () %Doﬁte—lwl/(%hp)
— 2 2 6(r) At T —r/(vsAD)
2D r= 1?4y Aoy Wore oo
T > VpAp
3D r=VE P 12 qid(@)d(y)i() Trew® |

+ Essentially same result in 1D, 2D, and 3D
- Expect similar collective effects in 1D, 2D, and 3D
- Reason why lower dimension models can get the “right” answer for
collective interactions in spite of the Coulomb force varying with dimension
+ Explains why the radial density profile in the core of space-charge dominated
beams are expected to be flat for linear applied focusing forces
- Linear charge => Linear self-field force to cancel linear applied force
- Expected to happen for any reasonable smooth distribution
See examples in: PRSTAB 12, 114801(2009)



Distribution of particle oscillation frequencies

in a continuously focused Thermal Equilibrium Sheet Beam
Nonlinear oscillation wavelength A of a particle with Hamiltonian H
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For a thermal equilibrium, apply probability transform to calculate frequency
distribution in normalized form:
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Apply procedure for a smgle value of rms equivalent beam o /o
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Superimposed results for rms equivalent beam values of & /0o show how the
distribution of oscillator frequencies in a thermal equilibrium sheet beam changes

as space charge intensity is varied
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Discussion points:
+ Most features of thermal equilibrium results should roughly apply to any

choice of smooth equilibrium distribution. For strong space-charge expect:
- Broad distribution of particle oscillation frequencies
- Large range of oscillation amplitude moves nearly force free in core due to
Debye screening till being nonlinearly reflected in the beam edge
+ Broad frequency distribution suggests robust stability properties:
- All modes stable for thermal equilibrium
- To the extent can extrapolate results to non-equilibrium distributions in periodic
focusing channels helps explain the robust beam stability observed in
experiment and simulations for very strong space charge:
Tiefenback, Ph.d. Thesis, University of California at Berkeley (1986)
NIMA 561 203 (2006); NIMA 577 173 (2007)
+ Rms equivalent KV beam does not accurately model the average frequency in
the distribution except for weak space charge.
+ Suggests odd feature of KV model applied to space-charge mode resonances:
- For weak space charge with 0/0¢ S 1, KV model should work adequately:
Freq dist highly peaked about avg space-charge shifted value in spite of
nonuniform charge distribution
- For strong space-charge with o /0¢ < 0.75 , KV model poor:
Freq dist very broad in spite of increasingly uniform charge distribution



Conclusions

+ Sheet beam model developed for simplified analysis of beams with

intense space-charge
* 1D structure simplifies analysis
> Poisson equation for self-field simple form but long range
* Image charges possible to model
 Rms equivalent beam and envelope equation analogous to 2D case
+ Simple 1D sheet beam model used to i1lluminate several features with a

continuously focused thermal equilibrium beam
1) Equilibrium very similar to 2D systems suggesting good model
2) Debye screening same in 1D as 3D and 2D systems
> Suggests collective effects closely model higher dimensional systems 1n
spite of the very different Coulomb force
3) Frequency distribution calculated
> Space-charge strongly broadens distribution
suggesting robust stability for high space-charge with smooth distributions
Published article details work:
Lund, Friedman, and Bazouin, PRSTAB 14, 054201 (2011)
Work on periodic focusing (simulations; M. Campos-Pinto) to be submitted
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